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INTRODUCTION
Assume an explosive source located at ﬁ, with coordinates X and Y,
occurring at time T. The resulting wave may be described by rays which are
normal to the wave front and which travel with velocity cn + ;, where ¢ is the
mean sound speed, n is the unit vector in the direction of propagation relative
to the air, and w is the wind velocity, with x- and y-components u and v. The
wave arrives at a microphone Mi located at ?i = (xi, yi) at time ty The

following vector equality holds:

=5 ~ > .
R + (Cini + wi) (ti - T) s (1)

where ¢ and ;i are mean speeds over the path from the source to Mi' When Eq.

(1) is solved for Cﬁi(ti-T)’ and resolved into component form,

2 2 o 2
Ci(ti - T)" = [X X + ui(ti T)]
F Y-y, +v (e, - DY @)
i o i ¢ &
Formally, one has
fi(X,Y,T) = 0, 3 = 1,2;..n 3)

if there are n microphones.

The system of non-linear equations represented by Equation (3) requires
three microphones for a solution of X, Yand T. More than three microphones form
an over-determined system. To completely locate the source requires accurate

-> >
knowledge of cyo wi, ri, and ti'
Devoting attention to the problem of determining ti alone, without the

consideration of the complete problem could be merely an academic exercise.




First, it is obvious that the error in determining the source position is

> >
dependent on all the quantities Ci» Wi» Ty and t A surveying error of one

i . B

foot toward the source is equivalent to one msec time error. The quantities
N and 31 must be considered means over the individual ray paths, which do not
necessarily follow the surface. Second, the problem of what is the "best"

solution to an over-determined system of equations is not clear. The present

method appears to weight the end microphones by one-half. Should a weighted

e g

| least-squares method be used, or perhaps a 'robust'" method which is insensitive

to large errors in individual microphones? An empirical test of the 'best"

e g

determination of ty is not independent of the algorithm used in solving Equation

P~ (3). Third, the nature of the signal is changed by the propagation through the l‘

k; air and by the detection and recording system. This fact severely affects the
determination of t;-

Thus certain areas of the entire sound ranging problem -- those areas
which appear to directly affect the determination of arrival times -- will be
investigated. The total problem is shown as a block diagram in Figure 1. The

o source is characterized by its position X and Y, time T and energy E. This

produces some disturbance in time f(t). This disturbance is propagated through

f _ the atmosphere, which acts as a non-linear filter, producing a different signal
l h(t). This filter may be characterized by its sound speed ¢, a function of

E ‘ time, position, and height and by the ratio of the specific acoustic impedance
of the surface to that of air, Z. The microphone detects this signal and what-
| ever noise is available. The microphone, the amplifier, and the recorder also
act as a filter, with response g(w), changing the signal to q(t). It is this
signal which provides the information from which the arrival time at each micro-

' phone must be determined. The arrival times, together with surveying and

T T T e pe—
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Figure 1. Block diagram of sound ranging problem. The dashed
lines indicate the theoretical connections by means of a model.

At present, there are no connections from source or detection.




meteorological data, are analyzed according to a model which is supposed to
represent the propagation delay time. The result is the position and perhaps
the strength of the source.

Section I will deal with the nature of the source signal during the early
part of the propagation, when it must be treated as a shock. Section II con-
siders the propagation problems arising from vertical gradients in temperature
and wind, and the ever-present boundary between the earth and air. The effect
of the microphone response on the signal will be treated in Section III.
Finally, Section IV will contain recommendations for future investigations.

Some attempts at digital analysis and semi-automation in determining arrival

times will be described in another paper, although some general comments on this

subject are included in the recommendations.

*
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I. THE PROPAGATION OF AN EXPLOSIVE SHOCK WAVE
The propagation of explosive shocks in the atmosphere has received

extensive investigation during the last 30 years.1 Both theoretical calcula-
tions and experimental measurements over wide ranges of explosive energies
agree that, after a certain distance, the disturbance is described by the pres-
sure vs length signal shown in Figure 2. Both the magnitude of the pressure
rise P and the length of the positive pressure pulse L are functions of the
dimensionless variable ¢ = r/d, where r is the distance from the source and d

is a characteristic length given by

/3’ (4) |

_ 1
d = (E/PO)

where E is the energy of the source and P, is the ambient atmospheric pressure.

Less is known about the negative pressure region. The magnitude and 4
length described in Figure 2 are taken from Brodez. Sometimes secondary reflect-
ed pulses ride along this region. However, the initial pressure surge and the
length of this pulse are certainly the important parameters of the signal in
determining arrival time. Surely if this signal were not distorted by the
atmosphere, ground, and microphone, the determination of arrival times would be
simplified.

The characteristic length given by Equation (4) is proportional to the
cube root of the energy of the charge propelling the projectile less the energy
of the projectile and recoil, thus approximately proportional to the diameter

of the bore. However, for artillery, various lengths of charge are available.

Using values reported by Wurtele and Roe3, the energy for the No. 7 charge for

an 8-in bore is 1.22 x 108 J. For sea-level, this results in d = 10.6 m. Other

charges and bores of US artillery have energies which may be approximately by




Figure 2. Overpressure vs. length for a typical wave due to an

explosive source. P is the shock pressure differential and L is

the length of the overpressure pulse.




scaling to the kinetic energy of the projectile, given by the weight and muzzle
velocity. Table 1 contains the resulting characteristic lengths for charges N
No. 1 through No. 7 for 8-in, 155-mm and 105-mm artillery. It may be noted that
there is overlap, depending on the charge used, between light and medium and

between medium and heavy artillery.

Table 1. Characteristic lengths for various charges and diameters. (Length in

meters. )
Diam. Charge #1 Charge #3 Charge #5 Charge #7
105 mm 2.9 3.3 3.9 52
155 mm O 4.9 6.0 8.0
8 in 5.9 6.8 8.4 10.6

At the range of 1 km, Table 1 yields a dimensionless parameter g which
varies between 94 for the most powerful 8-in charge and 350 for the least power-
ful 105-mm charge. The largest value expected would be for No. 7, 105-mm at
maximum range (11.5 km), which is r = 2200. Thus the range of r of interest in

sound ranging is from 100 to 2000. For these values of r, the shock is weak and

the compilation by Baker is incomplete; his values for L beyond r = 60 being an

extrapolation. Fortunately the shock is weak, allowing the calculation of wave- H

shapes and arrival times.

The detail of this calculation are relegated to Appendix A. Due to the
quasi-adiabatic nature of the propagation, the high-pressur> shock front travels
faster than the ambient pressure point on the wave. The rate at which L increases

with distance of propagation is given approximately by

dL _ y+l P
dr 4y po )
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where Y is the ratin of specific heats (1.40 for air) and P is the peak over-
pressure. The increase in entropy across the weak shock causes the total energy

of the wave to decrease with the distance of propagation according to
_:___‘.=___________’ (6)

where E is the energy of the wave, given by

Y i
E = 4nr P?L (7)

3pc”
here p is the air density and ¢ is the sound speed.
The substitution of Equation (5) into Equation (6) and the integration
of the result yields

EL = constant. (8)
Equation (7) and (8) may be solved for P as a function of r and L,
P =P (xr fr) &4 /L), (9)
(e} (8] O

where the zero subscripts refer to some reference distance from the source, ro
Finally, Equation (5) combined with Equation (9) may be integrated to obtain:

B
o
e Al + B 8 et 3R (105
o o 4y By 0 o
Using Baker's tabulated values for g = 60, (Po/pO = 2.48 x 10—3, L0 = 0.8561,

o 60d), one has

L(g) = d[0.733 + 0.109 1n (c/60)]1/:. (11)

Several values of this function and others of interest in sound ranging

are tabulated in Table 2. The relative overpressures P/po are determined from




Equation (9). The next column contains the instantaneous speed of the wave

(V/¢) as a function of &. This is calculated from

V=c@ +ﬂp—-)

we) (12)

derived in Appendix A. One notes that this speed is very close to the speed of
sound.

The important speed in the sound ranging equations is, however, not the
instantaneous speed, but the mean speed over the path. Due to the strong
shock propagation close to the source, the mean speed is larger than the instan-
taneous speed. The last column of Table 2 lists this mean speed as a function
of . For ¢ = 60, Baker gives for the arrival time t = 58.8c, or <V>/c = 1.020.
The mean speeds in Table 2 are based on this plus the change in arrival time due
to AL between  values. The tabulated values are given quite accurately by the

empirical fit

<V>/c =1+ 1.4/7 - 15/r,2 (13)

over the range 7 = 100 to ¢ = 2000. It may be noted that these values are not
negligible for heavy artillery at short ranges, varying between a 1.257 correc-
tion to a 0.39% correction for heavy to light artillery at 1 km. This is equi-

valent to temperature corrections of 1.9°C and 0.2°C respectively.

Table 2. Dimensionless variables for the propagation of explosive shocks. The

1/3-

characteristic length is d = (E/pn) The characteristic speed is

the sound speed c.

z=r/s L/d P/p0 v/e <v>/c

100 0.893 1.43x103 1.00061 1.0125

200 0.941 6. 7710 1.00029 1.0065

500 1.002 2.54 1.00011 1.0027

1000 1.045 1.22 1.00005 1.0014
5

2000 1.086 5.86x10 1.00003 1.0007
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In principle, a faithfully received signal, together with a known range,
would allow the determination of d and hence the energy of the source. In
practice, the vagaries of propagation close to the earth's surface make this
determination exceedingly difficult. The most useful information is probably
contained in the period or frequency content, rather than the pulse height.
Assuming a mean value of L/d to be 1, the period of the positive pulse will be
approximately d/c. The characteristic lengths in Table 1 show that heavy artil-
lery will have periods ranging from 17 to 31 msec, medium artillery will range
from 12 to 24 msec, and light artillery ﬂill range from 9 to 15 mfeﬁ.in period

e L by R A
in the order of 12 msec.

The frequency spectrum of a signal such as shown in Figure 2 is obtained

from the Fourier transform of the pulse,

©

) » P(t) ei\dt (14)

-00

where w is the angular frequency 27nf. For a pulse approximating Figure 2,

0 g t<0
P(t) = Po(l-t/r), 0<t<t , (15)
0 ' £
e i 27)1/2
P (w) e (1 . 51nwr) 2 (1 LOSMT) 16)
POT WwT wT wT ﬂ

This relative spectrum is shown in Figure 3. The high frequency spectrum falls
off at 6 db per octave, being down 3 db at wt = 5. This 3-db point corresponds
to a frequency of 0.8/t, where 1 is the over-pressure period. This frequency

ranges from 26 to 46 Hz for heavy, 34 to 66 Hz for medium, and 52 to 94 Hz for

light artillery.
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Figure 3. The magnitude of the pressure spectrum of a pulse such as

shown in Figure 2. The period of the pulse is I = L/c. The high
k frequency rolls off at 6 db/octave with the -3 db point at about
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The above theoretical predictions for the wave shapes due to various

artillery assume spherical propagation through a homogeneous, non-absorbing
medium with no boundaries. Perhaps the two most dangerous assumptions involve

the neglect of absorption and the neglect of boundary influence. Both of these

P e Spand L

neglected effects tend to filter out the high frequencies of the wave, although

the fundamental over-pressure period ought not be effected much. These effects

then primarily increase the rise time of the initial pressure pulse, although

{ the finite amplitude effect considered here will tend to reshape the shock.
Since the neglected effects do not change the period of the pulse, the

fundamental frequency of the period would perhaps be more indicative than the

3-db points of the unabsorbed pulse. These frequencies range from 16 to 20 Hz

# for heavy, 21 to 41 Hz for medium, and 33 to 59 Hz for light artillery. Section

ITI will show that the response of the T-23 microphone is 3db down at about 25 Hz.

FEPE
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II. ATMOSPHERIC PROPAGATION OF THE PULSE
The sound ranging equation, Eq. (2) is a two-dimensional equation,

assuming circular propagation in a plane. This plane is, of course, the surface
of the earth where both the source and receivers are located. Disregarding that
this surface is not often a plane to within the wavelengths involved, and assum-
ing a homogeneous surface temperature and wind, there still exists the problem
of temperature and wind variations with altitude. 1t is well known that these
variations cause waves to be refracted -- sometimes upward resulting in the
microphone being in a shadow zone, sometimes downward resulting in direct propa-

gation along a curved path. (See Figure 4.) Thus two cases exist: If the

phase velocity of sound decreases with altitude, only diffracted energy reaches
the microphone, traveling with the speed determined by the surface temperature
and wind. As is true for all diffracted waves, the low frequency components are

diffracted with greater efficiency than the high frequency components. The

second case of refracted propagation occurs if the phase velocity increases with
altitude. Due to Fermat's principle, the curved path results in a travel time

- which is less than the path along the surface. This results in a higher mean
velocity than that predicted by use of the surface temperature and wind. In
addition, reflections from the ground make possible multiple paths, with the
corresponding superposition of signals.

The diffracted case is mathematically difficult and is also beset with
experimental difficulties involving the determination of the specific acoustic
impedance of the surface, not to mention the large number of different geologi-
cal and biological surfaces imaginable. Wurtele and Roe3, using Doak's solu-

tiona, have determined the effect of the boundary on the shape of pulses described

by Heaviside step functions and '"N'" shaped waves. Their results indicate the

L L T
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v s

Figure 4. Propagation for (A) gradient in phase velocity is negative, and
(B) gradient in phase velocity is positive. Case A creates a shadow zone

along the surface however sound is diffracted (with loss of high frequency
components) along the surface. Case B results in the refracted rav arriv-

ing before a surface ray would arrive.
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rather drastic filtering effects on pulses diffracted over boundaries which
have specific acoustic impedances that are not much larger than that of air.
Figure 5 (adapted from their Figure 4.5) shows the resulting shape of an "N"
shaped wave of 29 msec duration after being diffracted one km along surfaces of
various specific acoustic impedances. 1In the figure, Z is the ratio of the
surface impedance to that of air, pc.

Although the signal is fairly faithfully reproduced for Z = 100, lesser

values of Z show increasingly severe loss of high frequency components. The

boundary thus acts as a low-pass filter, reducing the amplitude of the signal
and increasing the uncertainty in determining the arrival time, although the

ot original pulse length is preserved. The rise time increases with distance, as

;“ shown in Fig. 6, where a unit step function is shown after being propagated
according to Wurtele and Roe for distances of 1, 2, 5, and 10 km along a surface
with Z = 10. Consideration of the fact that artillery pulses are not longer
than 30 msec leads to the conclusion that arrival times are increasingly diffi-
cult to measure for longer distances.

} Even though diffracted signals may (dependent upon Z and range) make
source strength determination and arrival time difficult to measure, the propa-

gation along the surface simplifies the determination of mean sound speed. The

proper values to use when the phase velocity decreases with height are simply

the surface values of temperature and wind velocity. There appears to be no

need to include upper-level values in some weighting scheme.

In cases where the phase velocity increases with height, the situation
is reversed. The refracted waves ought to faithfully represent the pulse in-
vestigated in Section I, but the mean sound speed and wind velocity must include

the properly weighted upper-level meteorological data. These mean values could

-

S e .
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Figure 5. Distortion of 29 msec '"N" shaped pulse after being propa-
gated 1 km. (Adapted from Wurtele & Roe, 1977.) The ratio of the

specific acoustic impedances of the surface to that of the medium

18 2.
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pressure

0 20 40 60
time (msec)

Figure 6. Rise times for a Heaviside step function diffracted along
boundary of Z = 10 for various distances. (Adapted from Wurtele and

Roe, 1977).




be determined by a ray-tracing program, but that would probably require too

much computer power. An approximation to the correct weighting may be obtained
for simple atmospheric models. The simplest model is one in which it is assumed
that both the sound speed and wind vectors have linear gradients with respect
to height.

The analytic solution for such a model is contained in Appendix B. If
a Taylor expansion for the sound speed ¢ as a function of height z is truncated

at the first-degree term,

c(z) = ¢, A + az), (17 )
where
= 1 dc
e s dz °’ (18)

and y is the sound speed at the surface. Likewise, the wind vector, when
resolved into a component tangent to the path of the ray (u) and a component nor-

mal to the path (v), may be expanded to yield:

u(z) = ug + cobz,
19)
v(z) = v, = codz,
where
L dd . 1L dv
b . c dz° w3 c dz °
o o

Under the assumption that higher-order terms are negligible, it is shown in
Appendix B that the mean speeds for a refracted ray are given by the values c,
u, and v evaluated at one-third of the maximum height of the ray, and that the

maximum height obtained by the ray is given by

72 = % (a +b) &%, (20)




where a and b are the gradients defined above, and R is the range of the ray

(the distance between source and receiver). It is clear from Equation (20) that
Z is positive only if a + b > 0. Otherwise the ray is diffracted along the

boundary rather than refracted along a curved path.

Table 3. Meteorological variables for first example.

Parameter Surface 800 m~-level
Virtual temp. 280 K 275 K
East wind 0 5 m/sec
North wind 0 2 m/sec

As an example, suppose the virtual temperature and wind components are

1/2

given by Table 3. One has Co = 20.05 (280) = 335.5 m/sec, c = 332.5 m/sec,

800
S =l 5
m

a=~1.12 % 10 EE Ty Fr e (along the x-axis), and d = +0.75 x

10-S m-l. Propagation in most directions is along the surface, with c¢ =

335.5 m/sec. However, propagation in the negative x-axis (toward the west,

down wind from the east wind) is refracted. Here a + b = 0.74 x 10—5 m_l, yield-
ing a maximum height of only one meter for a range of a km, and 92 m for a range
of 10 km. Neither of these ranges would yield much of a change in mean sound

speed, there being only a 0.1 m/sec change from the surface value in the latter

case.

Table 4. Meteorological variables for second example. (Actual case at WSMR.)

Parameter Surface 200 m=level
Virtual temp. 28L.5 K 283.1 K
East wind 0 7 m/sec

South wind 0 2 m/sec
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However, larger gradients are possible. Consider the case described by

ﬁ Table 4. One has for propagation in the westerly direction:
‘1
ﬁ g = 336.4 m/sec
i €500 = 337.4 m/sec
a=1.49x10" m '
‘ b=10.4 x 10> m \
d=3.0x10"m?}
The mean speed along the direction of propagation is
<v > = 336.4[1 + 5.9 x W ¥y,
where R is the range in km. For 1 km, e 336.6 m/sec, and for 10 km, o g
= 356.2 m/sec, a 20 m/sec difference from ¥ For R=1 km;, Z = 15 m, and for
] R =10 km, Z = 1.5 km (higher than the 200 m level, requiring knowledge of the
meteorological parameters above 200 m). Since most temperature inversions do
] not prevail for 1.5 km, the R = 10 km case would not be as drastic as calculated

above.

This method of approximation to the correct weighting of upper layer
meteorological data is not significantly more difficult than the presently used
method. For a particular ray, if a + b < 0, then surface values would be used.
If a+b > 0, an analysis using surface values could be used to determine R, and
Eq. (20) would yield the maximum height obtained. The meteorological data eval-
uated at one-third this height would then be used for hte mean sound speed de-

termination.

Refracted propagation also opens the possibility of multiple arrivals.

Some rays leaving the source at smaller elevation angles are refracted back to

the surface where they are reflected and finally arrive at the receiver. These




rays arrive later than the main refracted ray, and with amplitudes dependent on
the reflection coefficient at the surface and the angle of incidence. Since
the maximum height depends on the square of the distance, the correction in the
time of arrival depends on the inverse square of n + 1, where n is the number
of reflections. Thus the travel time, which for the main refraction, is given

by Eq. (B20).

: 1 9
T=—‘[l+§z(;1+b)(zl+6b)R], (21)
(o]
becomes
- R o Y : R 2 09
T = e (L + o5 (@ + b)(a + 6b)(n+1 ] (22)

for a refraction which is reflected n times. As n becomes large, T approaches
R/Co' These multiple arrivals should come in at times which are reminiscent of
the hydrogen spectrum, since Equation (22) is of the same form as Rvdberg's

B
equation (1/n7).

Finally, Appendix B determines the mean sound speeds to be used in the
sound ranging equations. These are not the same as the instantaneous speeds
measured at the microphone array. Since the arriving ray comes in at an angle
90, the trace velocity of the wave as it crosses the array is faster than the
mean speed between source and receiver. Snell's law requires that these trace
velocities are in fact equal to the speed at the maximum height obtained by the

ray. This may be determined by calculating

—‘-=—,——“— 0 (23)

which, using the results in Appendix B, results in

u
=C[1+ (a+b)z+—), (24)
o >
R o

dx
dt




b b s i

v T

i S i

where Z is the maximum height obtained for the range R.

In the analysis of the sound ranging problem where the sound speed is a
function of range, as it is both for the finite amplitude eff~ct and the re-
fracted effect, care must be exercised in the formation of the equations to
assure that the travel times reflect the mean sound speed over the ray, rather

than simple time differences determined by the local sound speed.
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IITI. THE RESPONSE OF THE MICROPHONE

The T-23 microphone is basically a pair of Helmholtz resonators with
heated wires inserted in the neck connecting the two resonators. As the air in
this neck moves, wires change their temperature due to convection. These wires
are part of a bridge circuit which develops an unbalanced electromotive force
due to the change in resistance of the wires. Figure 7 indicates the physical
layout of the resonators.

The equivalent electrical circuit for the double resonator is shown in
Figure 8. The acoustical inertance of a neck is labled M, the acoustical resis-
tance of a neck is labled R, and the acoustical stiffness of a cavity is labled
C. It is apparent from Figure 8 that the bottom resonator acts as a series
LC-tank circuit, with the top resonator acting as a low-pass filter.

From measured parameters of the microphones and from the actual response
of several microphones as measured in a pistonphone, the frequency response of
the microphone has been determined. The details of this determination are con-
tained in Appendix C. The resulting response is illustrated in Figure 9. It
is noted that the response is sharply peaked at about 17 Hz, with a -6db/octave
roll-off for low frequencies and a ~18db/octave roll-off for high frequencies.
Comparing this response with the spectrum of the artillery pulse, as developed
in Section I, confirms that the microphone's frequency response does not pass
enough high frequency information to faithfully reproduce the signal.

The problem faced in increasing the frequency response of the microphone

¢ s . w .0 . . w . T LT SRy T T

is that this will also increase the noice in the recorded signal. Whether the
signal-to-noise ratio is improved by an extended frequency response depends on
the nature of the noise spectrum. The noise spectrum, of course, depends on

a lot of variables, including terrain, wind fluctuations, and man-made noise.
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Figure 7. Acoustical configuration of Hot-wire microphone.
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Figure 8. Equivalent electrical circuit for Hot-wire microphone.
M and R are the acoustical inertance and resistance for the necks and

C is the acoustical stiffness of the cavities.
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Some studies of low-frequency noise due to turbulence indicate that the spec-
trum falls off on the order of 6db/octave5'6. On the other hand, man-made noise
due to battle would have a different spectrum. Since the explosive source as
considered in Section I has a period approximately in proportion to the diameter
of the bore, small arms fire should have a spectrum which is flat to about

900 Hz (.30 caliber).

The transient response of the microphone is more illuminating to the

problem of determining time of arrival than the frequency. The response of

the T-23 microphone to a triangular pulse which is an approximation to the
explosive source shown in Figure 2 is obtained in Appendix C by the method of
laplace transforms. The results for various periods are shown in Figure 10.
The amplitudes are normalized so that a pulse length of 1000 msec (almost a
Heaviside step for this microphone) will yield an output of unity.

As shown in Section I, the periods of interest in sound ranging vary
from 10 msec (light artillery) to 30 msec (heavy artillery). As seen from Figure
10, these pulses have responses varying from 357% to 70% of the response to a
1000 msec pulse of the same amplitude. There is also variation in the amplitude
of the negative over-shoot of the response. These variations are shown in
Figure 11, where the amplitudes of the positive-going, and negative going
responses to pulses of various periods. Also shown in this Figure are the
approximate periods for light (105 mm), medium (155 mm), and heavy (8 in) artil-
lery pulses. One notes that the valleys have somewhat less amplitudes than the
peaks and that, for light artillery, besides the smaller pressures, the response

is only about one-half for that of heavy artillery. This is due to the restricted

frequency response of the microphone.

!
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Figure 11. Response to unit triangular pulse of period 7. The solid
curve is the positive peak response, and the dashed curve is the nega-
tive peak response which follows. L, M, and H refer to light, medium,

and heavy artillery.
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Of course, one must see the signal in order to determine the location of
the source, however, the time response to the pulse is critical in determining
the arrival time. There are at present four points on the response curve which

are used to determine the arrival time:

(1) The Break
(2) The Pressure Maximum
(3) The Cross-over

(4) The Pressure Minimum

The orthodox order of preference of these points is (1), (3), (2), and (4).7
One observes from Figure 10 that the break is difficult to determine in
that, for all periods, there is very little signal for the first three msec.
This is due to the sharp cut-off on the high-frequency side of the frequency
response of the microphone. Assuming a noise of *0.05 (S/N = 26db) added to

the response, the approximate deviations in determining the four points in time

may be found to be:

Break = *2 msec
Maximum = *8 msec
Cross-over = *3 msec

Minimum = *10 msec

confirming the orthodox order, although the cross-over is almost equivalent to

the break.

Unlike the detectable break, which lags about 3 msec behind the actual
signal, the peak, cross-over, and valley lags depend on the period of the signal.

This is seen in Figure 12, where the lag of these phases are shown as a function
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Figure 12. Time lags of the peak, crossover, and valley as functions

of pulse period.




of the period of the pulse. It is seen, however, that the lags are fairly

insensitive to the period; a change in period of 20 msec resulting in a change
in lag of the valley (total length of signal) of only 10 msec. This insensi-~
tivity has two results: first, it makes it difficult to determine the period
of the pulse and thus the type of artiilery from the shape of the signal.
Second, it allows the use of any of the three alternate phases (maximum, cross-
over, and minimum) to be used as arrival times (assuming the same phase is used
across the whole array). The maximum differential in pulse period across the ‘
array for a particular pulse would be for heavy artillery at short range (1 km).
Table 2 shows this to be about 3 msec across the entire arrayv for an extreme
flanking angle. This results in only a variation of 1 1/2 msec for the valleys,
with less for the peaks and cross-overs.

Thus, the use of a sharply peaked microphone has both advantages and
drawbacks. Nearly all signals look about the same, which allows phase-compari-
son of signals, but the differences in input pulses are masked. In particular,
the initial response to the signal is very slow, but the lag time is almost in-
dependent of the period of the input pulse. All this reminds one of Heisenberg's
J uncertainty principle -- and for good reason -- the product of the bandwidth of
the microphone and the uncertainty of the arrival time of a pulse must be a

; . 8
constant for a particular signal-to-noise level.
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IV. RECOMMENDATIONS
Each of the foregoing sections are theoretical in nature and suggest
experiments that would test the theory. The following recommendations stem

directly from this investigation:

(1) A STUDY OF THE NATURE OF THE SOURCE SIGNAL. Although the triangular
shaped waves due to explosions have been studied for sources that
range from very large nuclear blasts to conventional TNT explosives,
there may be questions still unanswered dealing with artillery.

How symmetrical is the wave? Are there secondary shocks, creating
""N'" shaped waves? What is the exact relation between charge and
bore to the period? These measurements require microphones with
wide frequency responses, and these should be placed from about

500 m to several km from the sources. Also required would be
meteorological data to confirm whether the propagation is diffracted
or refracted. Some of the information sought in this study may al-
ready be available, but unknown to the author. The rise times
associated with the received signals could answer the question of
what is the effective specific acoustic impedance of certain types

of terrain.

(2) A STUDY OF REFRACTIVE CORRECTIONS TO SOUND SPEED. The present
method of weighting the vertical meteorological data appears ad hoc.
Section II contains theory which indicates a method of weighting which
could be programmed and the resulting locations be compared to the
present method. Besides this test on already existant data, study

(1) should yield actual travel times if timing is included. This

e E— P——
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timing data could also indicate whether the surface meteorological
or the presently used 200-m data is the more proper data to use in

analysis.

(3) NOISE STUDIES. Arrival times could be improved by extending the

response of the microphone and by increasing the dynamic range of
the recorder. This is only true if the signal-to-noise ratio is
E not significantly decreased. There is very little known about the
noise present underneath the wind screen. Here again, a wide-fre-

quency response microphone is needed, along with wind speed data.

. As mentioned in the introduction, an investigation of semi-automatic
determination of arrival times has been made. This was done with an HP 9825

calculator with the input data digitized at a 5 msec sampling rate by hand. The

calculator was able to detect the presence of signals by their magnitude to
within about 10 msec. Closer analysis determined that although the breaks were
difficult to detect, the peaks, cross-overs, and valleys were detected to within
about a msec. In addition, cross-correlation of entire signals resulted in

arrival time differences of less than one msec except for difficult signals.

A system compatible with such a calculator would acquire data with micro-
phones with a flatter frequency response, and thus more information content.
Since the algorithms used would not depend on hand calculations, the microphones
could be placed in non-linear arrays, enabling distinction between forward and

rear sources. The acquired data would be stored digitally on magnetic tape and

displayed on CRT's. Operators would have the flexibility of filtering and

amplifying the data for display.




e

The most efficient development of such a system would be by a team com-
posed of people with expertise in the following areas:

. & |
! (1) Field sound-ranging

(2) Microphones

(3) Computer hardware

(4) Computer software

(5) Atmospheric propagation of sound

(6) Information theory.
Some understanding of what the seismic industry has accomplished, and/or famili-
arity with the Navy's SONAR program would be helpful also.

Finally, it is quite possible that the biggest problem with sound ranging
accuracy is the fact that meteorological data is obtained, by necessity, out-
side the area of interest and previous to the time of interest. However, this

has yet to be proved, and therefore improvement in time-of-arrival determination

is not necessarily an academic exercise.
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APPENDIX A
THE PROPAGATION OF A WEAK TRIANGULAR SHOCK
Suppose the waveform at some distance r from the source is similar to

Fig. 2 and is given by

0 s X <80

P(x) = P -ty 5, 0=<x=<h (A1)
(e] (o] O
0 s X =N

As the shock propagates, the pulse length increases since the shock at x=0

travels faster than the point at x = L‘. The rate of change of L is given by
C

dL _ dLde _1dL

dr dt dr ~ ¢ dt °’ (AZ3

where ¢ is the sound speed. The velocity of the shock is given by
P -
= (A3)

where y is the ratio of specific heats, P is the differential shock pressure

and Py is the ambient pressure. For weak shocks P/p << 1 and
(8]

i A e ) (A4)
4
(8]
thus
dL YL P
— = ~ +——_._————- - ~
gr = o LY po) iy 2

since the end of the pulse, having no overpressure, travels at the speed c¢. Eq.

(A5) substituted into Eq. (A2) yields

dL

+1
ar Ya )

o T aa
L pO

The total energy of the shock wave may be obtained by integrating the
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energy density
2

U=P_é‘9 (A7)
pc |

e

where p is the density of the medium, over the entire volume of the wave.

Assuming spherical propagation, this becomes

4 5 3 2
‘ Tr Bl o
E = 5 @ - L) dx, (A8)
pc :
(e]
: L 05
3 _ 4rrx L ; (A9)
E 2
3 3pc

If energy were conserved, one could solve Eq. (A9) for P(r,L), substitute
into Eq. (A6) and integrate. There is, however, an increase in entropy across
the shock which depends on the third power of the pressure difference across

the shockl

@
o

<

la~}
w

(A10)

where S 1is entropy, T is absolute temperature, and V is volume. For an ideal

. 8as,
32
SN +1 V
' SR - X9 (AL1)

ap g b P
where the adiabatic relation pV' = coust has been used. Substitution of Eq.

(A11) into (A10) results in

3
5§ = nR (y+1) (P) ) (A12)
2 p .
12y o

1}

where the equation of state pV nRT has been called upon. The number of moles

is n and R is the gas constant.




The rate change of entropy with distance is

ds _ds dt _ 1 ds

D
_ R(y+1) (I_) dn
12v°c ‘P

where dn/dt is the rate of flow (in moles) across the shock.

spherical propagation,

where cp is the max flux and M is the molecular mass. Thus

2 3
ds _ 4mr (y+1)P

dr W :
12y po H
where the ideal gas relation p = pM/RT has been used.
The rate of energy loss is dE = -TdS, or
2 3
dE _ 4rr (y+1) P
dr Pl 2
i
ol po
Division by Eq. (A9) leads to
2
LdE _ _ (r#l)pc” P
dr e
4y Py L
or
LE _ _ytl 2,1
E dr 4 P, B ?

2
where ¢~ =y po/p has been used to simplify. Thus

which, upon integration yields the remarkably simple result

(A13)

Again assuming

(A14)

(A15)

(A16)

(A17?

(A18)

(A19)




B .

39

EL = constant. (A20)
Thus
2,2 2 ) 2
4ty P L 22
plac gner o (A21)
3pc” 3pc
or
i3 L
p=p -2 -2 | (A22)
0 ) o 1

which, when substituted int Eq. (A6) becomes

P
+
i Ll o Y,l o o d_l" (A23)
L 4y p E
(&) O
I, T
o 0
or
P
Y+l (e} ’2
= {L e e 2 : 2
L _IO[LO T ronn(r/ro)]} (A24)
o

The above derivation has considered the increase in entropy due to the
finite amplitude of the shock, but has neglected the increase in entropy due to
viscothermal and molecular relaxation effects. The absorption of sound in air
is frequency dependent and highly sensitive to humidity. High frequencies are
attenuated more rapidly than low, resulting in a rounding off of the initial

pressure peak.
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APPENDIX B
MEAN SOUND SPEED FOR WAVES REFRACTED BY CONSTANT
GRADIENTS IN SOUND SPEED AND WIND VECTOR
If 6 is the elevation angle of a sound ray (normal to a wave front) and

1
¢ is the azimuth angle, then the law of refraction yields

ek W
c
¢ p
S S PO
cosf cos@o (B1)

where 60 and ¢o are the original source values for the ray and Cp is the phase
velocity of sound. The first equation demands that the azimuth angle is constan
and the second is Snell's law of refraction. In a moving medium, the phase

velocity is

A >
Cp =NC SERTew (B2)

where c is the sound speed in a nonmoving medium, n is the unit vector in the
direction of the ray, and w is the wind velocity vector (the velocity of the

moving medium). This is in contrast to the group velocity
c =cn+w, (B3)
which is the velocity of energy propagation.

Since, for a particular ray, ¢ is fixed, the wind vector may be resolved

into two components: u in the direction of and v normal to n. Thus Eq. (B1)

becomes

¢ +u cosb
c +ucosb _ o o o

cos0 i cos® (B4)

If the atmosphere is considered to have linear gradients for ¢ and w,
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c=c (1 +az),

o
u=u + cobz (B5)
v =

v. + c dz
0 0

where a, b, and d are constants with units of (1ength)-1. Thus Eq. (B4) has
the solution
1 + az

cosf = COSOO E_:—SE_ZBEEZ < (B6)

If the additional assumption bz coseo << 1 is made, then Eq. (B ) becomes, to

the first order
cosh = vosﬂn[l + (a+Db cosGO)z]. (B7)

The above assumption requires that the total change in wind speed over the path

of the ray is much less than the sound speed itself. Eq. (B7) may be solved for

cosb - cosH
0

Z = (@ + b cosd )cosd_°’ (B8)
0 o

and thus

2 sinf do
(a + b cosf ) cosp
0 o

dz = (B9)

The velocity of the ray's tip is given by the group velocity

dx
dt

¢ cosf + u,

dy
dt

Vs (B10)

\

c sind ,

<
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dx _ ¢ cosd #+ u,
dt
dy _ 0)
e (B1
dz
£L = ¢ gind
i ¢ sinf,

where x is in the ¢-direction, y is normal to the ¢-direction, and z is up. It

is clear that the ray reaches its maximum height Z when 6 = 0, and that the path

is symmetric with respect to this position. Thus, since

dx cosf u
— R +
dz siné ¢ sind ’ (B11)
then
z
)
S - L (B12)

sinf ¢ sin6
0

where X is the x-coordinate of the point of arrival of the ray back at the sur-

face. (See Fig. Bl). Eq. (B9) simplifies this to

5 G}
o 0 0
X = —~ cosfdo +
(a+b cosoo)coson B0

ds |. (B13)

nle

(8] o

The first integral in Eq. (B13) is simple and the second is much smaller
(since u/c<<1l), allowing for the approximation

uO i CO bZ S uO

= —_— T — 4 ..

s (0 + at) : bz (B14)
(8] (o}

nle

Eq. (Bl4) combined with (B13) yvields

5 UOOO b
- + -0 . B15
[Sinoo i LR a+b COSOO (taneo o)] ( )

(a + b cosd )cosd
o 0
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Figure BI.

Geometry of refracted rav.
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Assuming that 00<< 1, this simplifies to
26 u
[ 2a + 7b 2 0
= — +—-———————6 + —
X a+b [} 6(a + b) o co] H (B16)
where terms beyond 83 have been neglected in the trigonometric expansions.
Following the same arguments,
260 d - Yo
=___.—-——————-O + —
* a+b [@(a + b) o c;] ’ (BL7)

where Y is the net displacement of the ray in the y-direction.
Thus the x and y components of the ray have been found. The mean speed
is this displacement divided by the travel time. The ~ime of travel is obtained

from integrating

¢ sinb

or, with the use of Eq. (B9),

)

T = 2 R S (B19)
(a+ b cosOO)COSQO c(l + az) >
i 0

where T is the total travel time. This may be approximated by

0
T &G ¥ b cost)cost f gt (820)
o o o 5

which becomes, with the use of Eq. (B8)

26 a(tan® -6 )
T = g [1- 2 °] J (B21)

¢ (a + b cosH )cosH a+ b cosb
o o o o

or, for small 90,

20
s 0 a + 6b 2
= —————~Co(a + ) [1 t6G T D) 80] . (B22)
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The mean speed in the x-direction is thus

. 2
X 6 " u
cw>=2=c |1 +-24+-2 (B23)
X T ol 6 c,
i
and the mean speed in the y-direction is
2
Y vo de0
< > =2 — = e B2
v T= % |3 6 (B24)

e -

These equations are the mean speeds for a ray leaving the surface at an eleva-
tion 00 and arriving at (X,Y) at time T. The results depend on a linear gradi-
ent in ¢ and w which is not too steep and they are correct to the second power
of 00.

One must now replace 00 with the proper function of the distance between
source and receiver, since OO is not generally known. The total distance tra-
velled by the ray (measured along the surface) is

A - a7 . 2. %1"
R= (X" +Y)?=—2= [1+“a 8 +~‘l] , (B25)

a+b 6(a+b) o <,

correct to order 003 and to first power in uo/co. Thus

Oo = %(a + b)R, (B26)
correct to order Rz. This yields
i 2.2
< > = —_—t =
. co[l + c, 2% (a+b)y K], (B27)
and
v
0 d s
. el h L S .
<vy <, [Co 2 (a b)R‘] (B28)

The maximum height obtained by the ray is given by

1 = cose0
&

(B29)

(a+b cosﬂo)coseo
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or, for small 60,
2
A 60
{ = — B30
; 2= 3@+ 1) R J
|
% Thus retaining terms of order 602/(a+b), which has been done, corresponds to
k| retaining terms linear in z, consistant with the constant-gradient atmospheric
model. Finally, it may be noted that Eq. (B30) may be written
E 4
1 2
Z= 8 (a + b)R", (B31)
'
giving the maximum height in terms of the range and the gradients.
The substitution of Eq. (B31) into (B27) vyields
k.. Yo 1
<v>=¢c [1l+—+= (a+b)2],
X o K 3

T—
I

c@ +udy, (B32)

or, the mean speed in the x-direction is the speed evaluated at Z/3, one-third

of the maximum height. Likewise Eq. (B28) becomes

Yo 1
<v.> = ¢ [— + = dZ]
. y (= 3
o
Z
= V(g) (B33)
or, the cross-wind evaluated at 1/3 of the maximum height. ﬁ

!
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APPENDIX C. T-23 MICROPHONE FREQUENCY AND PULSE RESPONSE

The T-23 double resonator hot wire microphone has the acoustical configu-
ration shown in Figure 7. The analogous electrical circuit is shown in Figure 8.

This circuit is composed of elements defined to be:

M = Inertance of neck,
R = Acoustical resistance of neck
! C = Compliance of cavity,

V/oc2 = V/yp

where Y is the ratio of specific heats and p is the ambient pressure. The sub-
scripts refer to the upper resonator (1) and the lower resonator (2). The
acoustic pressure incident on the microphone is P(t) and the volume velocity

flowing through the necks is U(t).

For P(t) = Poelwt, the loop equations are:

b U - U

f LS PR 2
| P0 = lliU1 - R1U1 i ——EEI——

(c1)
. U U, = U
_ "Rf SO SN S S Y
0= inzU2 S R2U2 i oC, i wCI

where U1 and U2 are the amplitudes of the volume velocities through the necks.

Since the output is proportional to U the relative response of the

2’

microphone is given by

U2 )

1
Pz g
(o]

where Z is the effective acoustical impedance. The solution to the set of equa-

tions (Cl) yields
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Z=R"+ iuM' - 1 fl~ (€3)
wC
2
where
o e S ) + R.(1 - wM.C.) (c4)
it g, Ny 2 iy g
and
MU= M (L4 e W 22C.) + M. + R.R.C.. (c5)
il . | 2 Rzl
&
The output voltage is thus,
E = 20 log(K/|z|) db, (C6)

(8]

where K is a constant of proportionality and [Z[ is the absolute value of the

complex impedance. The phase angle of the output with respect to the input is,

g = tan_l(-X'/R'), (€C7)
where,

X' = oM - - (c8)

> m(ﬁ

The acoustical impedance of a small tube is1

=L (8u 4,

Zc = 5 ( 5 23 3 1wp), (C9)
s d r

where L and r are the length and radius of the tube, } is the viscosity of the
air, and p is the density of the air. The criteria for smallness depends on the
thickness of the viscous boundary layer which, in turn, depends on the frequency
of the signal. 1In addition, the effect of the impedance miss-match between the

infinite medium and the tube is sometimes approximated by adding a correction to

the length of

Bl & = (c10)




The volumes of the cavities and the characteristics of the necks have been

2
measured.” Using C = V/Yp and Eqs. (C9) and (C10),

o
I

1.9 % 107> cmS/dyne

1
C2 = 0.7 x 10_3 cms/dyne
R1 = 3.4 acoustical ohms,
R2 = 30 acoustical ohms,

-2 4
M., = 3.8 x 10 gm/cm
=5 4
M, = 8.2 x 10 ~ gm/cm

In the above, the characteristics of the 25 Hz plug in the top neck has been
assumed. Since the tubes in this case are somewhat thicker than the boundary
layer, the values for R and M should be reduced.

Figure Cl shows the relative response of several T-23 microphones.3
This response was measured in a pistonphone and is accurate to within about
+1 db. The solid line beyond about 17 Hz is calculated from the above values,
and is seen to be an accurate representation of the measured response. For less
than about 17 Hz, there are two lines shown. The dashed line is the calculated
response using the values determined above. The solid line is an empherical fit

to the data using:

=
I

= 2.4 acoustical ohms,

R. =

20 acoustical ohms,

= 36 % 10-2 gm/cma
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-2 4
M2 = 7.8 x10 ° gm/em ,

assuming that R and M should be decreased due to the finite radius of the tubes.
As may be seen from Figure Cl, the above empirical values closely fit the
observed response curve. However, in the case of sounding ranging, the impor-
tant response is characterized by the response to a triangular-shaped explosive
pulse, rather than a sine wave. The response to a pulse is obtained from a
Laplace transform of the circuit. This is obtained from the frequency response

by substituting s for iw:

L[P(t)] _

2
= ) + s R . . - + +
LIE(O)] S (Mllzcl) s (M] 2C1 MZRIC]) s(Ml Mlcl/cl R RZC Mz)

1 1

1.1
+ R,C./C., + -
+ RI R1 1/‘2 s(cq” (C11)

where L[ ] indicates the Laplace transform. Some algebraic manipulations yield

)
C)m W, S

LfE(t)] = L[P(t)]. __f—(s) A (C1L2)
i 2 1 2 i
wnere w o | g - B A 3 oG
1 Mlbl 2 N2L2
4 s 2 2 2 2
f( ) =s + (5§, + _)s + ( . i ' +..:12 + 5152)5
. 2 ] 2 2 2 2
T ASpung H gy T 959 I8 T U e, (c13)
and
2 2 -
wlz = I/MZCI, 51 = Rl/Ml and 62 RZMQ.
If one defines x = SAulqo then Eq. (C13) becomes
4. 4 3 2
= a.,? a, X F: e s
g(x) wlZ[x + 13& + 1,% + 1 X 10] (C14)

T A T
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where —_\\\
¥
. el .
3 12
2 2 2
F R g S Sy Wi
o B 2
12
PN
§ w + S.w + T
o 172 2”1
8; = 2 (C15)
g .
g
mlwz
ao E 2
“12

We wish to factor the quartic Eq. (Cl4) by Ferrari's method. The first step is

to obtain the resolvent cubic

2 2 2
R T (ala3 - Aao)y - (al + aga,” - Aaoaz). (Cle6)

For the case at hand,

Y]
i

4.09,

8.54,

]
i

i

10125

5.88,

)
it

which, by numerical methods yields a real solution y = 4.857. This solution

b AR
results in resolving the quartic into two quadratic equations

315% - (x2 + cl(+)x . c2(+))(x2 “+ cl(-)x + CZ(_))’ (C17)

e e




2.30,

More algebraic manipulations result in

Oy o DB
phatdetr 7w o AR

for Eq. (C12) where e(s) = L[E(t)], p(s) = L[P(t)], and

2 2
(x + dl) + b1 3

5 5
(s + 32) By

and where

Assuming a triangular pulse for P(t),
0 g & < U

- o vy DT EET
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then
LI[P(t)] = p(s) = -I~ a - t/MNe " de, (C20)
8]
or, upon integration,
1 1 =sT ,
p(s) = 2 a - 79 + g © ) 2 (C21)
Substitution into Eq. (C18) vields
s (e = @ 3 3 5 3 23
e(s) Ll(b) + LZ(S) - t3(b). (c22)
where
1
e. (s) = i T A
i ®1(s)¢2(5)
' i
% T e, G
e—sT
23(8) = 755, Y0, )
Considering el(s) first, this may be written
+ B,s
o Al + Bls H :\2 st )
i 4, () b, (s) ¥

A table of Laplace transforms then vields

-.'llt
e 3 - -
El(t) = ; ;i 5 [prlsin blt PyqCO8 blt]
1
—azt
+ 5 [przsin bzt = Py, c08 bzt],

C

2 &
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Ty

where

= 9 P - g

Piy ‘.b](d:2 al),

2 2 2 9 ) .
kl~ i (dl b dl) + bzh + bl” - 4b hl

2 2 2 2. 2

Peo ™ (a] - J:) + b:2 + bl - 4h1 b2
Pio = sz("l - 13).

2 2
(% _), = 1 .

This portion of the response of the microphone is that due to a unit step function,

and is shown, normalized to unity, in Fig. C2.

Next, considering e, (s),

>}

which becomes

E,(E)}) = = l.t El (y)dy,

(8]

upon taking the transform. Integration yields

e &
E.(t) = - L {& —— [(Bb, - Aa )sinb t
= a, +b " A : 4
1 1
A, + Bal
-~ (Ba. % Kb Jjeos b.t] £ ———5
1 1 1 2 2
ay * bl

(Eq. cont. on next page)

N

(¥; ]

(C25)

(C26)

B!
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=2k

9
soxie @ ¢ 0 e
‘—?-__*_3'[(Bb2 - Caz)sln bzt
a2 ¥ b2
qu + Baq
-~ (Ba, + Cbl)cos blt] + 5 = " (C27)
- a,”  +b,

&

where, for this case,

A= 6.19
B = 2.51
C = 1.50.

This function, the response to the triangular portion of the pulse, is shown in
Fig. (3, with the same normalization as El(t).

Finally, the last term may be resolved by the use of

(C28)

yielding

1-23(::) = (C29)

-Ez(t - - A

The required function El(t) and Ez(t) are tabulated in Table Cl.

I Y

-~
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Figure C2.

The response function E(t).
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Figure C3. The response function E.(t)




Table Cl.

Response functions for the T-23 microphone. Functions are normalized
so that EI(T) = 1.000. The response to a triangular pulse of
max

duration T is E(t) = El(t) + E (t) + E3(t), where E3(t) = 0 for

t £ 7, and E,(t) = -E,(t - T7) for t > T.
El(t) TEz(t)

S ) (volts) (volt-sec)
0 .000 s
> .076 -.0001
i -376 -.0012
o « 74 -.0040
20 .97 -.0084
gt .97 -.0133
2 17 ~. 0877
35 47 -.0208
" 18 -.0224
= -.02 -.0228
-.0224

-.0217

-.0211

-.0207

-.0206

-.0207

-.0208

-.0210
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